いま読んでいる『滅亡するかもしれない人類のための倫理学 長期主義・トランスヒューマン・宇宙進出』という本によく考えれば当たり前ながら今まで考えたことのない話が載っていました。
ボストロムなら「ポストヒューマン」段階に突入しているはずだとするその局面は、意外なことに、産業革命以前のような低成長時代になるはずだ、とマッカスキルは主張する。パーセントのオーダーで人口増加や経済成長が続くような時代とは、産業革命以降の過去200年に加えて、近未来のおそらくは数百年から数千年程度しか持続しえない。地球外の宇宙に進出したとしても、ではなく、進出すればなおのこと、なのである。マッカスキルのシンプルな計算を引用しよう。
将来の成長率が少し鈍化して、年間ちょうど2パーセントになったとしよう。この成長率でも、1万年後には、世界経済は現在の倍にもなる。つまり、現在の産出量の1兆×1兆×1兆×1兆×1兆×1兆×1兆×100倍になるのだ。ところが、地球から1万光年以内の範囲には、原子が最大でも個しかない。つまり、現在の成長率があと1万年続くなら、私たちが原理的に利用できる原子1個につき、世界の産出量が現在の1000京倍〔倍〕になる計算なのだ。もちろん、断定はできないが、そんなことは起こりそうもない
引用:滅亡するかもしれない人類のための倫理学 長期主義・トランスヒューマン・宇宙進出
有史以来数千年間はずっと0%台の超低成長で、現代のような実質ベースで年率2%みたいな成長が続いているのは産業革命以降の200年程度の極めて短い期間だけです。
実質GDPは年率2%成長が200年続くと約52倍、500年なら約20万倍、1000年なら約4億倍になる計算です。
上記引用文では原理的に利用できる原子をベースに書かれていましたが、GPT5.2Thinkingによると、エネルギー消費の成長率が年率2%だった場合、1,545年でダイソン球(恒星の全エネルギーを利用可能にする人工構造物。ここでは太陽の全エネルギーを使えるもの。)の限界にぶつかるそうです。
現在の世界一次エネルギー消費を 620 EJ/年(≒ 19.6 TW)と置き、年率2%で増えると仮定します。
太陽全出力(ダイソン球の理論上限)は L⊙ ≈ 3.828×10^26 W です。
このとき、現在(約19.6 TW)からの到達年数は次の通りです。
太陽全出力の0.1%(3.828×10^23 W)に到達:約1,197年
太陽全出力の1%(3.828×10^24 W)に到達:約1,313年
太陽全出力の100%(3.828×10^26 W)に到達:約1,545年
比較として、「地球が受け取る太陽エネルギー(約174,000 TW)」を上限に置いた場合は約459年でした。
上限を「地球入力」から「太陽全出力(ダイソン球)」に置き換えると、同じ2%成長でも上限到達は概ね+1,100年程度後ろ倒しになります(459年→1,545年)。――――――――――
根拠(数値と計算)
前提となる定数
太陽の全放射(IAU nominal):L⊙ = 3.828×10^26 W
世界一次エネルギー消費:2023年に620 EJ/年
現在出力(TW)への換算
1年 ≒ 365.25×24×3600 = 31,557,600 秒
620 EJ/年 = 620×10^18 J/年
平均出力 = (620×10^18 J) / (31,557,600 s) ≈ 1.965×10^13 W = 19.65 TW
年率2%での到達年数
到達年数 t は次式で計算します。
t = ln(目標 / 現在) / ln(1.02)
実際にはエネルギー消費量はGDP成長率よりも小さく済むはずなのでもう少し長持ちすると思いますが、太陽系内にいる限りはどうやっても数千年単位で2%成長を維持することはできなさそうです。
よくX千年後とか1万年後にはこんな凄い世界になっているんじゃないかみたいなことを言う人がいますが、現代人が想像できる範囲での大きな変化は年率2%程度の成長を前提としてもせいぜい100〜200年後くらいの世界で、1000年〜2000年後はダイソン球をつくれるレベルの文明になっているか絶滅しているかのどちらかなのではという気がします。
さらにGDP成長率よりも遥かに高い株式リターンの場合、実質ベースで年率6%でも200年で約11万倍、500年で約4兆倍、1000年で約2十𥝱倍とかなので、仮に資本主義が継続したとしたらとんでもないことになる計算です。
そう考えるとやっぱり今の延長線上で私たちが想像できるような世界は数千年どころかせいぜい数百年よりももっと手前が限界なんだろうなと思いますね。
よろしければ応援クリックお願いします
![]() |

コメント